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Dynamic model of base pair breathing in a DNA chain with a defect
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We model and analyze a short section of a DNA chain with a defect, with the aim of understanding how the
frequency, amplitude, and localization of breathing events depend on the strength of the bonds between base
pairs, both along the chain and between the chains. Our results show that the presence of a defect in the chain
permits the existence of a localized breather mode. The models we analyze are linear and hence solvable, with
solvability extending to the statistical mechanics formulation of the problem. Parameter values for the inter-
action energy of a base with its nearest neighbors are obtainedaiwser. The results indicate good agree-
ment with both the amplitude and the number of base pairs affected by defect-induced breathing motion.
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[. INTRODUCTION viously, for example in[4]. A related approach has been
taken by Cocco and MonassdB] in the study of Raman

The DNA duplex is characterized by the Watson-Crick spectroscopy measurements of DNA, taking a more detailed
pairing of opposing bases. However, one characteristic dymodel, which required extensive numerical calculations to
namical feature of DNA is the occasional local disruption ofanalyze.
this hydrogen bonding, so that the bases become more Breathing events in DNA chains have undergone much
solvent-exposed. This phenomenon is known as “breathstudy in recent years, most notably by Peyrard and Bishop
ing.” Taken to the extreme, breathing results in one or botH6,7]. Here we wish to analyze the effect of an inhomogene-
of a pair of bases becoming extrahelical, which is an impority in the lattice, and whether the presence of such an inho-
tant mechanism by which damaged DNA bases are recoghogeneity can account for breathing modes.
nized by base excision repdBER) enzymes. The breathing ~ Our work is perhaps most similar to that of Salefig3,
of normal base pairs takes place on the microsecond tim@ho investigated the mobility of nonlinear waves through a
scale and is therefore generally unobservable in atomistiPNA chain composed of a mixture of AT and CG base pairs.
simulations of DNA that are restricted to a time scale ofHis model accounted for the changes in strength of the inter-
nanoseconds due to computational cost. Recently, howevegtrand bonds, there being two bonds for an AT base pair and
base pair breathing was detected by Cubstral. [1] in the  three for a GC base pair. Til§] investigated a chain with a
mo|ecu|ar-dynamic$|\/|D) simulation of a DNA dup|ex con- defect in the form of an enzyme that moves down the DNA
taining a difluorotoluenéF) base, which is a nonpolar mimic double strand. Ting’s model is of the same form as ours and
of thymine (T). It was concluded that the reduction in the that of Peyrard and Bishop, namely a ladder shape with
interaction energy of F with its partner, a conventional ad-Springs joining each base to its three nearest neighbors, two
enine(A) base, resulted in the time scale of breathing event&n the same strand and one on the opposite strand, as illus-
moving into the range accessible by atomistic MD Simu|a-trated in Flg 1. In this case, we create a one-dimensional
tion. The close structural mimicry of F for T suggests thatmodel with linear springs, which proves sufficient to capture
this study may yield much information on the mechanics andhe observed behavior.
dynamics of DNA breathing that is relevant to the behavior A major difficulty in the application of simple lattice
of “normal” DNA, however there remains a need for alter- models such as that proposed here is the derivation of real-
native modeling methods that can address this issue directljgtic parameters describing the interaction potentials of

Lattice models of DNA have been used by Yakushevichneighboring base pairs. Only recently has this problem been
[2] and Lipniacki[3] to analyze the dynamics of DNA. In tackled, most notably by Olsest al.[10,11] and Cheret al.
their simplest form, these reduce to the sine-Gordon equdl2]. We overcome this problem by using the molecular-
tion, with more elaborate models including more degrees of
freedom and more accurate descriptions of the potential en:. P
ergies. Simple lattice models are amenable to numerical
simulation as well as detailed theoretical analysis, as we ,
shall make use of here, and which has been performed pre x * x * x * x
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FIG. 1. Schematic of the unwound DNA double helkrepre-
*Electronic address: Jonathan.Wattis@nottingham.ac.uk sents a base, horizontal lines markedenote springs joining two
TElectronic address: chris@holmes.cancres.nottingham.ac.uk  adjacent bases and vertical lines labelgdlenote the hydrogen
*Electronic address: sarah@holmes.cancres.nottingham.ac.uk bonding between opposite base pairs. At the center of the chain
$Electronic address: Charles.Laughton@nottingham.ac.uk (n=0) is the inhomogeneity, a weak interchain bond denated
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dynamics simulation packagevBER to measure the poten- =40
tial energy of interaction of the DNA chain in certain well-
defined configurations.

In the next section, we introduce a deterministic model of ... w3=0 w.=0 w.=0
the DNA double chain with a defective base, and show how
it may be simplified to allow more detailed statistical analy-
sis. We also describe how parameters required for the analy.
sis are derived fromMBER. In Sec. Il we solve the model,
and instead of calculating the partition function, we find all
the normal modes of oscillation. From the resulting general
solution, we then find all the quantities of interest, for ex- v
ample rms deviation of each base pair; the more technical

calculations are relegated to the Appendix. The paper con- F_IG. 2. _Schematic of thg test deformations of the DNA chain
cludes with a discussion of the results. carried out inamBER from which energy measurements are used to

determine the parameteksy,e. A range ofyy values are used to
build up a profile of the energy wells.

v1=0 vo=0 v3=0

lo-0-0----000

1
—3%

Il. MODEL

We consider the DNA double helix hypothetically in its Vn=K(Yn+1—2Ynt+V¥Yn-1)—2vYn (In|=1), (2.9
unwound state as shown in Fig. 1. We assume that each base
is bonded to three neighboring bases, its base pair on the o=k Vet —2 29
opposite chain with a weak spring of constan ye in the Vo=KL Y1~ 2¥oty-1]=27eYo, 29
case of the inhomogeneity, with=0e <1) and also bonded hich demonstrate the decouplitignto x, andy,) of the
to its nearest neighbor on the same chain in each directionyeviously coupled equations of motiéd.2)—(2.5). In these

These latter bonds are represented by stronger springs, Qfiaples, the Hamiltonian (2.1) separates into H
constantk, with y/k<1. We denote the transverse displace- _ : .
- Hx(Xn !Xn) + Hy(yn ,yn), where

ment of the top row of atoms hy, and the lower by ,,, and
assume that there are no longitudinal displacements. All

bor_lds will be modeled by linear springs, yielding the Hamil- H,=>, {332+ 3K(Xp 41— Xn) %Y, Hy= y(e—1)y}
tonian n
1 2 172,1°2.,1 2 +2 {ly2+lk(y 1Y )2+'yy2}. (2.10
H=27(=1)yg+ 2 3t 00+ 3K(Upes—Un) = 12Yn T 2K(Yn+1 ™ Y n
1 —p )24 1 )2
+2K(vnr1—vn) 2 y(Un—0vy)", 2.9 A. Determination of parameters
from which the equations of motion The parameterk, y, ande are found through themBeR
forcefield, using a normal sequence of 12 DNA base pairs
Un=K(Ups 1= 2Up+Up_1)— yUn+ yo, (In|=1), and a defective sequence in which a thymine base is replaced

(2.2  Wwith a difluorotoluene base. In each case, all base pairs are
positioned at their minimum energy configurations, and the
Un=K(ni1— 200+ 00 1) — y0ntyu, (In=1), central base pai_(rAT in the normal sequence and AF in the
(2.3 defective chaipis then opened a certain amount, as illus-
trated in Fig. 2. At each choice of opening, the length of the
Up=K(U;—2Ug+U_q)— yeUg+ yevo, (2.4  H bond is measured, and the energy due to the AF or AT
interaction is measured and the energy due to along-chain
(2.5 interactions is also measured. In our model, this is equivalent

vo=k(v1—2v¢+v_1)— yevo+ yeUy, . ' ;
0=k(vy 0 1)~ yevot yeUo to positioning a DNA molecule in the configuratignp=0

can be derived. for all n#0 andy,=y, for variousy, . Using Eq.(2.6), we
We make the usual transformation of find up=3y, andvo=—3Yy, . In this configuration, the en-

. ergy due to the cross-chain interactions I:Ts;%yyfc ,
Xn=Untvn, Un=3(XntYn), whereas the energy due to along-chain interactiong,is

(26  =iky?.

Vo=Un—0n, Un=5(X1—VYp), _ The curves g_enerated fErk are displayed in Fig. 3, along
with quadratic fits. In chains with AT and AF central base

to separate out the relative motion of the interstrand distancpairs, a fit of the formA(Y—Y,)?+C has been sought,

(y,) from the average strand displacemexy)( the former  whereY is the known distance between base pairs at mini-

being our main quantity of interest in this paper. This impliesmum energy. The parametérthen corresponds tek, and

the equations yields k=0.0376 Jm? (using the conversion 1
) KcalM~ 1A "2=0.6955<10 % J m ?). At larger base pair
Xn=K(Xp11—2Xp+Xp_1) (all n), (2.7 openings, the backbone interactions cause the energy curve
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A. Normal modes for x,,
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Since thex, equations are completely independent of the
T inhomogeneity, we can seek the dispersion relation by as-
. sumingx,=Ce"?*1t: then Eq.(2.7) implies

Potential Energy (Kcal/M)
oW
ul o u
o o o

oo ] w®(0)=2+ksin(36). (3.2)

—4s0 T These are all delocalized, or spatially extended, linear waves,

—500 whose energy is spread evenly throughout the lattice. On
Length of AF bond’ (&) imposing periodic boundary conditions y(t)=xy(t), we

find e'N?=g~IN0+2Im7 {5 somem e 7. Thus allowable wave

forcefield and quadratic fits. Along the horizontal axis, distance isem: mar/N for m=0,1,2 ... N. The modes are then

measured in angstroms, and energy is measured in Kcallg the .
cal o (odd) /1y _ ~odd) S| (x)0\
vertical axis. Xnm (D =Cn cog (@m t)sinilnma/N),

to become concave rather than convex. For this reason, m=1,2,... N—1, (3.2
rather than trying to fit a quadratic to a small portion of the

data, we simply use the maximum and minimum energies, (even) 1\ _ ~eve sin )

and fit a quadratic of the form(Y —Y,)2+ C to these two X m () =Ch, cog (@m tycodnma/N),

points. This leads tg/=0.0146 Jm? ande=0.5, since the

values fork,, differ considerablyrecall that the data fo, m=0,1,2 ... N, (3.3

for the chain with the defective AF base pair were very simi-

lar to those for the chain containing the normal AT pair ~ Where
The mass of a base is taken as , whereN, is .

Avogadro’s number, givingqn=O.5098><$fg‘/%4 kg. Sincg all o =0®(0n) =2 Jksinma/2N), m=012...N.

bases are assumed to have the same mass, we shall rescale @4

time so that the mass can be ignored in the subsequent Cathjs constitutes the full complement oN4modes for the

culations. This corresponds to a rescaling of time iy second-order system of N2 variables x,(t) for n=

=0.7x10 2, so that each of our time units corresponds to— N, ... ,N—1. Odd modes corresponding to=0 andm
0.7 ps. =N are ignored since they have zero displacement and
therefore correspond to no motion. In the even case
Ill. SOLUTION OF THE MODEL [cosfnna/N)], them=0 mode corresponds to motion of the

. . . ) whole chain with no relative motion of atoms present; this
In this section, we find all the normal modes of this syS-mode has zero frequency, which is due to the whole system
tem of equations, and determine their amplitudes by settingot having any absolute reference point. The ewen N

the energy in each mode to biggT. We consider a finite  mode corresponds to the highest-frequency mode where ad-
chain whose atoms are labeled fram=—N to n=N—1.  jacent atoms move exactly out of phase.

Thus we have R base pairs, and a total o\4bases. The The amp|itudeg:g1dd,cfn"e” are determined by requiring
energy calculations are simple to evaluate in the Idge- the energy in each mode to Bé&gT. Equation(2.10 yields
limit, so this is the case on which we shall concentrate. How<k,T=H,=2NC?k sir’(m=/2N). Thus we have

ever, there is another large quantity in our calculations,

namely k/vy, since the bonds between the strands ére Codd_ ceven_ VkgT 35
much weaker than those along the strards Thus we shall m m 2 JkNsin(ma/2N)’ .

consider the regim&/ y>N>1.

To pose a fully and properly determined problem, weand the full solutions are
shall impose periodic boundary conditions, treatirg
=x_y andyy=y_y. Since the motion of each base is gov- ., JkgT Sin| .. . (Nm
erned by a second-order ordinary differential equation, there Xn,(m)(t) [ SJ(wm t) sin )

- : co
should be 8 normal modes of the systemN4modes in the 2\/m$|n(m7r/2N)
X, variables and Hl in they, variables. We shall find all of _ B
them. The modes appear in pairs, with a egp(and a m=12,...N-1, (3.6
sin(wt) formally being counted as two modes even though — .
they will share the same spatial form. Most modes are delo- y(even) ) — ks T [ sms} (0®Mt) cos{ nmw),
calized, or spatially extended, but a few are localized with m(m) 2\KNsin(m/2N) { €O "
larger amplitude at the inhomogeneity. We term these
“breather” modes. m=0,1,2 ... N, 3.7
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wherem enumerates the mode number. Adding the contribu-

tions from the singt) and the cos({’t) modes, these solu-
tions have mean-square displacement

kgT nmar
(odd) 2, _ B : ( )
X = si ,
(X 8KN sir?(m/2N) N
m=1,2,...N—1, (3.8
kgT nmar
(even) A _ B ( )
X = co ,
NG 8k Nsir(m/2N) N
m=0,1,2 ... N, (3.9

[where we use the notatioff(t)), for the time-averaged
value of f(t)]. The latter formula3.9) produces a divergent

PHYSICAL REVIEW E63 061903

oW 2(9)=2y+4ksir?(36). (3.12
Imposing periodic boundary conditions again yields a
“quantization” condition on@: yy(t)=y_n(t), which im-
plies sinN0)=0 so 6= 6,,=m=/N for m=0,1, ... N, and
there are only a finite number of normal modes. Thus we
have solutions

m ¢ =12 -1

N co (wm )! m= gy 0 N )

(3.13

where w{)=0¥)(6,,), and C is determined by forcing the
total energy of the mode to bgkgT. Here we reject the
modes corresponding tm= 0,7 since they both imply zero
displacement for thg,(t)’s therefore they are irrelevant.
Equation (2.10 implies kgT=H=3C?Nw® 2. Thus

(odd) _ sin

Yn,m=C sin(

total mean-square displacement when summed over alfe mean-square displacem_en'% )at sitelue to the p?i)r of
modes(m) in the largeN limit, as can be seen by the calcu- modes numbereth [one for sin't) and one for cos¢yt)]

lation

keT "' co2(nma/N)
8KN m=1 sir?(mm/2N)

(e 3=

kgT
4K

du,

m2c0g(2Nnu)
[ oo

sirf(u)

in which the singularity in the integrand at=0 causes the

integral to diverge. This is a standard result: there is no long-

range order in one dimension at aiiy-0. The sin modes
give
kT " sir(nmar/N)

(odd) 2 _
X =
X e 8KN =1 sir?(m/2N)

kgT

_ kgTn
 4kw B

4k -

l2sirf(2nu)
fo du (3.11)

sir?(u)

B. Odd normal modes fory,

We now look for the normal modes for thg,(t) vari-
ables, in which the inhomogeneity is present; this includes

breather solution. In the presence of an inhomogeneity, find-

ing a full set of normal modes is nontrivial, so to simplify the

IS

(v kgT sirf(mna/N)

= (3.14

AKN 2—7k+sin2(mw/2N)

Summing Eq.(3.14 over m, we can find the mean-square
deviation at a particular site due to the sum of all odg
modes(m) (See Appendix A1 for details

(o 3 keT "' siZ(mna/N)
Yn AKN 721 (y/2k) + siré(ma/2N)
kgT (1 1—cog2num) du
Tk -
=0 %+1—C05(,u77)
keT

n

, (3.19

%4\/2_‘)/k 1—exp<—2 \/Zky)

where u=mn/N. Thus the odd modes have small mean-
square displacement near the inhomogeneity.

a
C. Even normal modes fory,

In this case, the symmetry we impose is thatyq{t)

problem, we split it into two parts noting the invariance of =y _ (t), so that the shape of the mode is invariant under

the determining equations under the nmag —n. Thus we

n— —n. The inhomogeneity now plays a crucial role in our

shall look for modes that share this symmetry, namelyanalysis. Let us assume the modes have the form

“even” modes that satisfyy_,(t)=y,(t), and “odd”
modes that are antisymmetrjc ,(t) = —y,(t). We seek the
latter first.

The conditiony_,= —y, immediately impliesy,=0 so
the inhomogeneity is not noticeths occurs for all thex
modes. Insertingy,,= Ce“te "sin(né) into Egs.(2.7) and

aeve%:cnl[jg;}mu (3.16

for some shape of oscillation determined fywith fy=1.
The displacement of the atoms nearest to the inhomogeneity

(2.8), we find that the former is automatically satisfied, and(y+1) is then determined by, and Eq.(2.9) implies

the latter implies eithek =0 or 6=0,7. Both /=0 and ¢
= imply y,(t)=0 and so are irrelevany =0 yields the
dispersion relation

w2

ﬁ .

Y€

f]_:l“l‘ T

(3.17

061903-4
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The case tai#) =0O(1) can only be solved numerically, if
needed; here we choose to pursue theoretical results, so we
shall continue with the case in whiah,~ma/N.

Combining Eqs(3.12), (3.20, and(3.16 yields

y(1—e&)sin(|n| 6;y)
ksin(6,,)

(even)_ C

d Yn(m) = cognby,) —

}sin(w%’)t).
(3.29
Since in this case/N/k<1, the sin|n|6,, term is asymptoti-

cally small for allm=1,2,... N—1, and setting the energy

FIG. 4. Both sides of E(3.2)) plotted against showing how  of each mode tgkgT yields C?= kBT/ng) 2 Thus
periodic boundary conditions quantize the allowable valuesgfor

In the example illustrated\ =6, thus our chain has 12 atoms, and kT
there are 12 intersections of the curves, illustrating that there are as ygez’r%‘) 52| coINbm)
many even modes as atoms. Nogy
The displacement of all subsequent atoms is then determined _ 7’(1_8?3"1('”' Om) {S"g(w(y)t) (3.25
by Eg.(2.8), which implies ksin( 6, co m =
2y w2 and so, combining the siaft) and cose®t) modes, we
O=f 11— 2+T_? frtfnq (3.18 find
for n>1. This recurrence relation is solved by E]ezll'?’l?) 3 o~ (y) _[ 1+cog2n6,)
f,=C.e"?+Cre Y (3.19

: : . : 4y(1-e)sin(2|n|6)
where 6 is related tow through the same dispersion relation — s d
(3.12 as for oddy modes. Imposing the conditiorfg=1 Sin( )

and Eq.(3.17 on Eq.(3.19, we find the solution To find the total mean-square displacement at sitiie to
2 all even modes, we now need to sum this owver

). (3.2

sinné ve -
A =1,2,...N—1, givin
sno 1+ 2K cosé|. (3.20 N giving

f,=cosno+

N—-1
kgT 1+cog2né,
We have found a one-parameter family of solutions, param- (y(eve %:4I3N > $2n0m)

etrized by 6. This is reduced to a finite set upon imposing m=1 (¥/k)+1—Cog fpy)

periodic boundary conditions at= = N. Since we have ex- 4v(1—¢g)sin(2|nlo
plicitly constructed the mode to be even, the condition “Ksi 4 Sl)k n2|n[ 0m)
yn(t)=y_n(t) is automatically satisfied, hence to impose Sin(6) [ (v/k)+1—cogbpn) ]
pe_nlil)d;c bo_undsry cond|t|(t)kr]1'st\;]vet require that the ]om![ng of ~ kBTJl 1+ cog2npu )

n=N to n= is smooth; that is, we imposgy. 1(t) 4k ) u—o(yIk) +1—cog pum)

=y, _n(t), which impliesfy,,=fy_1. This simplifies to
4y(1—¢)sin(2|n|um)

—y(l—e¢ —
tar(N6)=)|;(STa) (3.21 ksin(um) [ (y/k)+1—cogum) |
Both sides of this expression are plotted in Fig. 4 udihg ~ B (1+e2M277K) _ A /2_7/(1_8)(1
=6 as an example. 42ky k
Fixing N and taking the limit of smallys/k (later we will
find that this corresponds to largé and smally/k with N — g~ 2m27TKy | (3.27)
<k/v) leads to all solutions of Eq3.21) occurring at small

values of tanl#). This impliesyN/k<1, and then the al-

lowable modes are determined by using results from Appendix A and noting thag(eve" 3

= (kgT/8K)[ [+ — 4y(1—&) n8)/Kk], whereq= y/2k.

mar y(l—eg)
Om=— |17 maksinma/N) |’ m=12,...N-1, D. Breathers in the infinite lattice
3.22 In long chains, it is natural to expect a mode that is cen-
tered on the defect and has an amplitude that decays with
Onm [v(1—¢) (3.23 distance from the defect. Such a mode is termed “local-
N k ' ized,” and since it will have a similar form to the breather
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mode in the sine-Gordon equation, we use the term E. Breathers in the finite lattice
“breather mode” here, even though our system is linear. The observant reader will note that in Setll C) we

For _the simple.sjt form of breather, we assume that th‘?ound 2N even modes andi2—2 odd modes in Se¢lll B),
decay is exponential and monotonic, that is, leaving a deficit of two modessince there should beNt
sin modes in a second-order system witN 2legrees of free-
yn=Ce”“{ J(“’t)' (3.2  dom). These final modes come from a breather-type oscilla-
co tion as discussed in Sec. Il D that is, an even localized mode
centered on the inhomogeneity. However, the mode found
there(3.31) does not quite satisfy the periodic boundary con-
ditions. The discrepancy is small, but we now show that a
similar mode that satisfies the boundary conditions can be
constructed. Note that in Sec. Il C we have restricted our-
selves to theoretical analysis of the cdsek/y, thus the
solution derived below where this condition is kept will not
necessarily agree with thé—c case considered in the pre-
ceding section.
We seek a time-harmonic solution of E&.8), as in Eq.
y(1-e) = sinhA~\ + 23 3.39  (3.16, but assume exponential growth and decay, iwhich
K leads to a solution of the formi,=Acosh{n)+Bsinh(\n).
Here,w is related tox through Eq.(3.29 as in the previous

for small \; thus A~ y(1—¢)/k, which we have already calculation of a breather mode. Imposifig=1 and Eq.
stated is a small quantity. Setting the energy of this breathei3.17) implies

mode to3kgT enable<C to be determined. Thus we have the
solution f —costinn— y(l—g) sinh( n)_cosk(>\(N—|n|))
n ksinh(\) coshAN)

Vo= /Wey(lsnn/k[ (?:)rll(\/at)’ (3.39

(3.31 The value of\ is determined by imposing periodic boundary
_ _ ] conditions and, assumingN<k/y, this gives A= y(1
which together have a mean-square displacement at fe  _;)/kN. The constanC is determined by requiring the en-

ergy in the mode to békgT giving C2=kgT/2yN, thus

Substituting this into Eq.2.8) leads to the dispersion relation
w2 =2y+2k(1—cosh\), (3.29

where the subscript “ac” stands for acoustic, since this
mode bifurcates from the minimun®& 0) of the dispersion
relation »)(6) (3.12. The value of\ is determined by
requiring Eq(2.9) to hold. This yields

ksT(1—¢)

2\ _ —2y(1—¢)|n|/k
o 2K ) . 992 ke T 2vy(1—¢) sin
(br) _ B _
. . . Yo =\ COS*( \ (N Inl)>{ J(vat)
This solution(3.3)) is relevant to our study, but does not 4yN kN co
satisfy periodic boundary conditions. In the next section, we (3.36

show how to modify the above analysis to produce a mode
that satisfies the periodic boundary conditions and the equand thus
tions of motion.

An alternative form of breather is possible, in which al-

ternate base pairs are displaced in opposite directions. This <y(br) 2> _ keT cosf’?( 27(1_8)(N—|n|))
can be described by no 29N kN '
3.39
y =C(—1)“e"‘”|[sms}(wt). (3.33
. co In order for this oscillation to be observable, we need to

_ _ _ _ verify that the extended/nonlocal modes have average ampli-
As with the acoustic mode, the relationship betwkeandw  tudes that sum to a smaller total. Thus, in the next section we
is found from Eq.(2.8), shall compare the mean-square deviations for all modes.

w5y =2y+2K(1+cosh\). (3.34
F. Summary

At A=0, this equals the maximum frequency of the spatially In the large chain lengtliN) limit, the average displace-
extended mode$3.12), which occurs atd=, thus this ment of the atomsX=u-+v) diverges(3.10, as is to be
mode is optical in nature. Equati@f.9) determines the rel- expected for a system with continuous degrees of freedom.
evant\, via sinth=—y(1—e¢)/k, thus this mode is irrelevant The separation between the two chaigs=Q—v), however,

in our case where <1. Modes that are optical in>0 and is well-behaved. We calculated this in several parts: the odd
acoustic inn<0 are impossible due to the dispersion rela-modes (3.15), the extended even modd8.27), and the
tions (3.29 and(3.34) not overlapping. breather mod€3.32. Now we put all these together to work
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- 2\2ky N2y
2 i
X costf \/Y(klNe)(N—|n|)> . (3.39

This quantity is plotted in Fig. 5, for parameters derived
from the AMBER energies derived earli€Bec. Il A). In this
case, we see that the central basbere the defect jsdevi-

FIG. 5. A plot of the rms displacement for the distance betweerates from its equilibrium position about one and a half times
base pairg3.389 measured in A , against base number for the caseas far as the bases away from the defect. This increased
£=0.5, y=0.0146 Jm? k=0.0376 Jm? N=6, andT=300K.  deviation only affects the atoms immediately neighboring the

defect h==1), and becomes negligible at the second-
neighbor sitesif{=*2) . In exceedingly long chains, away

out the total mean-square displacement due to all modes, afm the defect, the rms deviation of the interchain spacing
find how this depends on the distance from the defagt (  from equilibrium isVkgT/Y/(8ky). Near the defect, there is

(Y= (9% B+ (y20 3 4.y 2

_ KgT (1 2Z7R) 4 kgT
4\2ky 4\2ky

BTcosf?()\(N—|n|))

an increase in this displacement. Counterintuitively, this in-
crease in displacement, although causea #yl, is not very
sensitive to the value of, but rather ony/2k/N?y. Depend-

ing on the exact system being studied, this could be highly
significant, or very small, since our analysis rests oN 1/
being small ank/Ny being large, and this amplitude is the
product of these two quantities. The number of bases af-

—2|n|VZ77k Y

x|1+e +O(k) TN fected by this iO(\/(kN/y(1—&))).
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FIG. 6. Plots of the base opening distance against time for the defective bag®pééft), the nearest neighbon& 1, bottom lefj, the
second neighbom(=2, top righ}, and the third neighbditop right, showing the decrease in amplitude as one moves away from the defect.
The vertical axis records distance in A , and the horizontal axis shows time in units of 0.7 ps; the paraghetesse as in Fig. 5.
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~ FIG. 7. Distribution of opening distance for the AF ba§ed FIG. 8. Ratio of breathing rates for the standard base relative to
line) and a standard basdashed ling measured over 10 ns. an AF base. The AF base is expected to breathe around 1000 times

IV. ANALYSIS OF RESULTS faster than the conventional base.
In order to test the model presented here, we have inveghe time spent open to the time spent not open, as about 1
tigated its ability to(a) reproduce the frequency of breathing Kcal/mol. The same procedure may be used here. The calcu-
of an AF base pair as calculated from the atomistic simulalated free energy of breathing, for AF and normal base pairs,
tions, (b) reproduce the relative frequencies of breathing of as plotted as a function of the defining opening distance in
normal AT base pair compared to an AF pair, #odrepro-  Fig. 9. It can be seen that if we define opening as displace-
duce the free energy of breathing for the AF pair, as previments above 11.5 A | the free energy of breathing for the AF
ously estimated from the atomistic simulations. For this purJair is defined as 4.2 Kcal/mol. If, on the other hand, we aim
pose, the model was used to create a 10-ns dynamide reproduce the previous estimate of the free energy of
simulation, during which the displacement from equilibrium breathing, we must define breathing as opening above 4.8 A.
of the variableg/,(t) was sampled every picosecond. Figure The above results show a remarkable agreement given that
6 illustrates the first ns of the simulation for base pairs only three parameters have been fitted to external data
=0,1,2,3. Theesulting distribution of opening distances is (k/m,y/m,s), as described in Sec. Il A. Due to the rarity of
shown in Fig. 7, which contains the results for both the centhe breathing event, which is extremely infrequent even in
tral AF base pair and one of thstandard base pairs far the case of the AF base pair, the results described in this
away from the defect. section are very sensitive to the shape of the tail of the dis-
In the atomistic simulatiofi1], breathing was defined in tributions displayed in Fig. 7. Here, we have fitted the data to
terms of distances between hydrogen-bonded atoms in tHbe obvious first choice distribution, namely a Gaussian.
AF pair exceeding a certain critical value. With that defini- However, another distribution may give more accurate re-
tion, a breather was observed four times in 10 ns. From th&ults.
histogram, we have to define a breathing event in this model
as one that causes the distance between the bases to exceed V. CONCLUSIONS

11.5 A . We nowconsider whether such a definition of . .

“preathing” is consistent with the predicted ratio of breath- = We have shown that the presence of an inhomogeneity or
ing frequencies for normal and AF pairs, and for the Ca|Cu_defect in the interchain bonds is sufficient to cause a breath-
lated free energy of breathing of an AF pair. erlike mode to exist. Our model has no nonlinearity, which is

If we take 11.5 A to define a breathing event, then in factiSually necessary for breathers to exist. Being a linear
within the time scale of our simulation the normal base pairdn°dél, @ normal mode decomposition is possible, and it is
did not breathe at all. However, it is possible to infer from POSSible to explicitly find the full set of normal modes using
the fitted Gaussian distribution that such an event shoul@Symptotic analysis, which relies on the interchain bonding
occur once every 250 ns, i.e., a rate of 4 pa: Data from being chh wea}ker'th'an the a[ong-cham interactions. This
NMR on imino-proton exchange and chemical shift measurel€sult is interesting in its own right, since localized modes

ments indicate that for conventional DNA sequences, breatt'® usually attributed to nonlinearities, and we have shown
ing is an event that takes place on the microsecond timd1at they can actually be accounted for more simply by in-

scale, depending on experimental conditifta]. More pre- omogeneities in the lattice. This does not discount breather
cisely, taking 11.5 A to define base pair breathing, the ratio
of opening frequencies for AF and normal base pairs is pre-

[=}
dicted to be about 100. This may be considered to be at the % _g e
lower limit of the expected ratio. We have therefore calcu- % —4 ******
lated what the opening distance would have to be defined as B -6 e
in order to produce a breathing ratio AF:normal of 1000. 5 -8 ****
This can be calculated from the histograms, and Fig. 8 shows E —}(2) **.**
g -

how the ratio varies with the defining opening distance. We 2 4 6 8 10 12 14
see that for a ratio of 1000, we require breathing to be de- Distance (A)
fined as a displacement from equilibrium of 14 A .
From the atomic simulation, the free energy of opening of FIG. 9. Free energy associated with an opening event for the AF
the AF base pair was calculated, from the log of the ratio obase(diamond$ and a conventional bagstars.
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modes, since_traveling localized modes cannot be explained 1 codnmdp)

by our analysis. jg):f ,
The model has then been analyzed using the ideas of sta- O V1+02—cogmu)

tistical mechanics to investigate whether the breathing mo-

tion is observable when all modes are excited. At leading

order, all base pairs have the same mean-square displace- -(i):jl sinnmdu) (A2)
ment from their equilibrium position, but the first correction " 0 \1+G2—cog 7pu)

term to this result shows a clear peak in displacement at the

site of the defect. Figure 6 shows the interpair distance plotsg thatl = —j{) and

ted against time for the defective base pair and for the three

base pairs closest to it on one side. These show an increased 1 enmiu

deviation for the defective pair and its nearest neighbor, but jn:jgui'(ni):f (A3)
little effect on base pairs further away. 0 \14+G2—cog 7pu)

Here we have implemented periodic boundary conditions,
but other boundary conditions could be used, and we believgye then definel(8)==7_,5"j, and swap the order of the
that similar results would be seen. Boundary conditions oymmation and the integration. Performing the summation
some description need to be applied so that the correct nunside the integral yields
ber of normal modes are found and that the laxgkmit is
taken correctly, that is, without the introduction of extra, _ Ca
spurious modes that might invalidate subsequent analysis. A J(&)= fl L= ocosmu)Hidsin(mu) du ,
hint of this can be seen in the slight difference between the 0, \/1.72_ 2_
breatherlike mode in the finite system and the infinite sys- (V1+g@ —cosmu)(1+6°—25cosmu) (Ad)
tem.
In Sec. Il only the variables describing the spacing be-from which it can be shown that
tween the chains supported a breather-type solution; the av-
erage displacement of the double chain showed no localized ~ \/—Nz
oscillation. Experiments in which breathers were observed in I0(8)=Re[I(8)} = 1-69-6V1+q
only one strand and not the other cannot be explained by the ~ 5 \/—~2 :
analysis described here; for that a more general model is q(1+6°-26V1i+a7)
required, which we hope to present later. ) " e () ] ()
The comparison with results of molecular simulations de- SinceJ™’(8)==%,_,4"j,”, we can find thg,’ by equat-
tailed in Sec. IV shows that defining a displacement of mordnd the coefficients of powers af in
than 11 A to be a breathing event gives a reasonable time
scale for the occurrences, both for the defective AF base pair  q(1+ 62— 25V1+g2)JIM(8)=1- 89— 5V1+G2.
and for a standard base pair. This also gives free energy of (AB)
breathing, which is of the correct order of magnitude. For
such a simple, generic model, in which only three parameter$his yields the recurrence relation
are fitted to known data, these results show a remarkably

(A5)

good accuracy. 0=j+if,—2i ) N1+, (A7)
which has the general solution
ACKNOWLEDGMENT
We wish to thank Dr. Keith Benedict for helpful com- jP=Ci(N1+0%+ )"+ Co(V1+9%—q)".  (A8)

ments on the manuscript.
The constant$C; and C, are determined by equating the

0(8% and O(sY) terms, which aregj{’=1 andq(j{"”

APPENDIX:  CALCULATIONS -2jVJ1+9%=-9— V1+g2 These equations implg,
1. Calculation of j =0 andC,=1/q. This is consistent with ) —0 asn—o,

as we expect in this limit, due to the rapid oscillations in the

We rewritel , using trigonometric identities as . .
n USING INg integrand ofj " for largen. Thus

”_J;q+m¥@uw>_

1sir?(nur) d,u_ 1[1-co92nmu)]du — -
Jo 2q+1-cogmu) j(r)=(‘1+q2_q)n~e_nq_ (A9)
(A1) " q q

_ Rewriting in terms of our original variables, we fingf
and use ¥ 2q=/1+9>. Now define =4q(1+q) and hence
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2. Calculation of 5"

In_ é{l [1+29-2Vq(1+q)]*"} Here we tackle a similar integral using similar methods.
2Jg(1+q) We wish to calculate
1 1 sin(np) du
~——[1—expg—4n\q)], (A10) (), f
2Vq =] sinumi 291 -cospm 1 A
since we are interested in the linmit—c with g—0. thus we also define
1 cognum) du e du
(r),— (r) (i) —

= fo Snum2q+1-—cogpm] T fo Sinam)[ 24+ 1—codum) ]’ (A12)

and thenH(8):==,_,0"n,. Reversing the order of the integration and the summation, we find
H(5) = f ' du A13
(9)= osinum)[2g+1—cogum)][1-scogum)—idsin(um) ] (AL3)

To calculate (", it is sufficient for us to findH"(4)  142g—2Jaira)
=Im{H(J)}, WF]iCh can be found usingAPLE, 77(2')= (j/(qu() uli
q q
A 8(1—-458Vq(1+q)— &%
HO(8)= > -
2q(1+qg)(1—6%)[1—2(1+2q) 6+ 6] 4(1+2q —8(1+2q)Va(l+q)—1

(A14) 7=
. o , 2yq(1+q)
RecallingH®=37_,5"»"), we find they{"’s by equating
coefficients of powers ob in

Applying these to the solutiofA17) yields the constant€,

k=0,1,2,3) and hence the final solution
2\Jq(1+q)(1—-8)[1-2 1+2q)5+52]2 5"y ( )

=8(1-458Vq(1+q)—89). A15 A _

( Q( q) ) ( ) n%l)_()\z_l)z[()\_i_1)2_()\_1)2(_1)n_4}\1 n]'
For 8" with n=4, we find the recurrence relation (A19)
74— 2(1+20) 7 3+ 2(1+29) 71— 7l =0,

(A16)  This simplifies for the case of evem which we require, and

which has the solution simplifies further in the limit of smalg,

7W=Co+Cq(—1)"+CoA"+CA ", Al7
ot Ca( =1 C s (ALD o ANA(L-AT2N 1-[14+29-2Vg(1+q)]*

with A\=1+2q+2yq(1+q). Powersn=0,1,2,3 yield M2n= (\2—1)2 - 4q(1+q)
1 1— e 4n\a
=0, p=— =
71 ) (A18) ~— A20
2Vaira) 4q (A20)
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