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Dynamic model of base pair breathing in a DNA chain with a defect
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We model and analyze a short section of a DNA chain with a defect, with the aim of understanding how the
frequency, amplitude, and localization of breathing events depend on the strength of the bonds between base
pairs, both along the chain and between the chains. Our results show that the presence of a defect in the chain
permits the existence of a localized breather mode. The models we analyze are linear and hence solvable, with
solvability extending to the statistical mechanics formulation of the problem. Parameter values for the inter-
action energy of a base with its nearest neighbors are obtained fromAMBER. The results indicate good agree-
ment with both the amplitude and the number of base pairs affected by defect-induced breathing motion.
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I. INTRODUCTION

The DNA duplex is characterized by the Watson-Cri
pairing of opposing bases. However, one characteristic
namical feature of DNA is the occasional local disruption
this hydrogen bonding, so that the bases become m
solvent-exposed. This phenomenon is known as ‘‘brea
ing.’’ Taken to the extreme, breathing results in one or b
of a pair of bases becoming extrahelical, which is an imp
tant mechanism by which damaged DNA bases are rec
nized by base excision repair~BER! enzymes. The breathin
of normal base pairs takes place on the microsecond
scale and is therefore generally unobservable in atom
simulations of DNA that are restricted to a time scale
nanoseconds due to computational cost. Recently, howe
base pair breathing was detected by Cuberoet al. @1# in the
molecular-dynamics~MD! simulation of a DNA duplex con-
taining a difluorotoluene~F! base, which is a nonpolar mimi
of thymine ~T!. It was concluded that the reduction in th
interaction energy of F with its partner, a conventional a
enine~A! base, resulted in the time scale of breathing eve
moving into the range accessible by atomistic MD simu
tion. The close structural mimicry of F for T suggests th
this study may yield much information on the mechanics a
dynamics of DNA breathing that is relevant to the behav
of ‘‘normal’’ DNA, however there remains a need for alte
native modeling methods that can address this issue dire

Lattice models of DNA have been used by Yakushev
@2# and Lipniacki @3# to analyze the dynamics of DNA. In
their simplest form, these reduce to the sine-Gordon eq
tion, with more elaborate models including more degrees
freedom and more accurate descriptions of the potential
ergies. Simple lattice models are amenable to numer
simulation as well as detailed theoretical analysis, as
shall make use of here, and which has been performed
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viously, for example in@4#. A related approach has bee
taken by Cocco and Monasson@5# in the study of Raman
spectroscopy measurements of DNA, taking a more deta
model, which required extensive numerical calculations
analyze.

Breathing events in DNA chains have undergone mu
study in recent years, most notably by Peyrard and Bis
@6,7#. Here we wish to analyze the effect of an inhomogen
ity in the lattice, and whether the presence of such an in
mogeneity can account for breathing modes.

Our work is perhaps most similar to that of Salerno@8#,
who investigated the mobility of nonlinear waves through
DNA chain composed of a mixture of AT and CG base pa
His model accounted for the changes in strength of the in
strand bonds, there being two bonds for an AT base pair
three for a GC base pair. Ting@9# investigated a chain with a
defect in the form of an enzyme that moves down the DN
double strand. Ting’s model is of the same form as ours
that of Peyrard and Bishop, namely a ladder shape w
springs joining each base to its three nearest neighbors,
on the same strand and one on the opposite strand, as
trated in Fig. 1. In this case, we create a one-dimensio
model with linear springs, which proves sufficient to captu
the observed behavior.

A major difficulty in the application of simple lattice
models such as that proposed here is the derivation of r
istic parameters describing the interaction potentials
neighboring base pairs. Only recently has this problem b
tackled, most notably by Olsenet al. @10,11# and Chenet al.
@12#. We overcome this problem by using the molecula

FIG. 1. Schematic of the unwound DNA double helix.X repre-
sents a base, horizontal lines markedk denote springs joining two
adjacent bases and vertical lines labeledg denote the hydrogen
bonding between opposite base pairs. At the center of the c
(n50) is the inhomogeneity, a weak interchain bond denotedg«.
©2001 The American Physical Society03-1
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dynamics simulation packageAMBER to measure the poten
tial energy of interaction of the DNA chain in certain we
defined configurations.

In the next section, we introduce a deterministic mode
the DNA double chain with a defective base, and show h
it may be simplified to allow more detailed statistical ana
sis. We also describe how parameters required for the an
sis are derived fromAMBER. In Sec. III we solve the model
and instead of calculating the partition function, we find
the normal modes of oscillation. From the resulting gene
solution, we then find all the quantities of interest, for e
ample rms deviation of each base pair; the more techn
calculations are relegated to the Appendix. The paper c
cludes with a discussion of the results.

II. MODEL

We consider the DNA double helix hypothetically in i
unwound state as shown in Fig. 1. We assume that each
is bonded to three neighboring bases, its base pair on
opposite chain with a weak spring of constantg (g« in the
case of the inhomogeneity, with 0<«,1) and also bonded
to its nearest neighbor on the same chain in each direc
These latter bonds are represented by stronger spring
constantk, with g/k!1. We denote the transverse displac
ment of the top row of atoms byun and the lower byvn , and
assume that there are no longitudinal displacements.
bonds will be modeled by linear springs, yielding the Ham
tonian

H5 1
2 g~«21!y0

21(
n

1
2 u̇n

21 1
2 v̇n

21 1
2 k~un112un!2

1 1
2 k~vn112vn!21 1

2 g~un2vn!2, ~2.1!

from which the equations of motion

ün5k~un1122un1un21!2gun1gvn ~ unu>1!,
~2.2!

v̈n5k~vn1122vn1vn21!2gvn1gun ~ unu>1!,
~2.3!

ü05k~u122u01u21!2g«u01g«v0 , ~2.4!

v̈05k~v122v01v21!2g«v01g«u0 , ~2.5!

can be derived.
We make the usual transformation of

xn5un1vn , un5 1
2 ~xn1yn!,

~2.6!

yn5un2vn , vn5 1
2 ~xn2yn!,

to separate out the relative motion of the interstrand dista
(yn) from the average strand displacement (xn), the former
being our main quantity of interest in this paper. This impl
the equations

ẍn5k~xn1122xn1xn21! ~all n!, ~2.7!
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ÿn5k~yn1122yn1yn21!22gyn ~ unu>1!, ~2.8!

ÿ05k @ y122y01y21 # 22g«y0 , ~2.9!

which demonstrate the decoupling~into xn and yn) of the
previously coupled equations of motion~2.2!–~2.5!. In these
variables, the Hamiltonian ~2.1! separates into H

5Hx( ẋn ,xn)1Hy( ẏn ,yn), where

Hx5(
n

$ 1
2 ẋn

21 1
2 k~xn112xn!2%, Hy5g~«21!y0

2

1(
n

$ 1
2 ẏn

21 1
2 k~yn112yn!21gyn

2%. ~2.10!

A. Determination of parameters
The parametersk, g, and« are found through theAMBER

forcefield, using a normal sequence of 12 DNA base pa
and a defective sequence in which a thymine base is repla
with a difluorotoluene base. In each case, all base pairs
positioned at their minimum energy configurations, and
central base pair~AT in the normal sequence and AF in th
defective chain! is then opened a certain amount, as illu
trated in Fig. 2. At each choice of opening, the length of t
H bond is measured, and the energy due to the AF or
interaction is measured and the energy due to along-c
interactions is also measured. In our model, this is equiva
to positioning a DNA molecule in the configurationyn50
for all nÞ0 andyn5y* for variousy* . Using Eq.~2.6!, we
find u05 1

2 y* andv052 1
2 y* . In this configuration, the en

ergy due to the cross-chain interactions isEg5 1
2 gy

*
2 ,

whereas the energy due to along-chain interactions isEk

5 1
2 ky

*
2 .

The curves generated forEk are displayed in Fig. 3, along
with quadratic fits. In chains with AT and AF central ba
pairs, a fit of the formA(Y2Y0)21C has been sought
whereY0 is the known distance between base pairs at m
mum energy. The parameterA then corresponds to12 k, and
yields k50.0376 J m22 ~using the conversion 1
Kcal M21Å 2250.695531023 J m22). At larger base pair
openings, the backbone interactions cause the energy c

FIG. 2. Schematic of the test deformations of the DNA cha
carried out inAMBER from which energy measurements are used
determine the parametersk,g,«. A range ofy0 values are used to
build up a profile of the energy wells.
3-2



so
he
ie

i

s
c

to

s
tin

-
w
ns

e

v-
e

g
el
it
s

he
as-

ves,
On

s

and
se
e
is

tem

ad-

en

i

DYNAMIC MODEL OF BASE PAIR BREATHING IN A . . . PHYSICAL REVIEW E63 061903
to become concave rather than convex. For this rea
rather than trying to fit a quadratic to a small portion of t
data, we simply use the maximum and minimum energ
and fit a quadratic of the formA(Y2Y0)21C to these two
points. This leads tog50.0146 J m22 and«50.5, since the
values forEg differ considerably~recall that the data forEk

for the chain with the defective AF base pair were very sim
lar to those for the chain containing the normal AT pair!.

The mass of a base is taken as 307/NA g, whereNA is
Avogadro’s number, givingm50.5098310224 kg. Since all
bases are assumed to have the same mass, we shall re
time so that the mass can be ignored in the subsequent
culations. This corresponds to a rescaling of time byAm
50.7310212, so that each of our time units corresponds
0.7 ps.

III. SOLUTION OF THE MODEL

In this section, we find all the normal modes of this sy
tem of equations, and determine their amplitudes by set
the energy in each mode to be1

2 kBT. We consider a finite
chain whose atoms are labeled fromn52N to n5N21.
Thus we have 2N base pairs, and a total of 4N bases. The
energy calculations are simple to evaluate in the largeN
limit, so this is the case on which we shall concentrate. Ho
ever, there is another large quantity in our calculatio
namely k/g, since the bonds between the strands (g) are
much weaker than those along the strands (k). Thus we shall
consider the regimek/g@N@1.

To pose a fully and properly determined problem, w
shall impose periodic boundary conditions, treatingxN
[x2N andyN[y2N . Since the motion of each base is go
erned by a second-order ordinary differential equation, th
should be 8N normal modes of the system: 4N modes in the
xn variables and 4N in the yn variables. We shall find all of
them. The modes appear in pairs, with a cos(vt) and a
sin(vt) formally being counted as two modes even thou
they will share the same spatial form. Most modes are d
calized, or spatially extended, but a few are localized w
larger amplitude at the inhomogeneity. We term the
‘‘breather’’ modes.

FIG. 3. Plots of the potential energy of interaction due to ext
sion of the k springs, showing data calculated from theAMBER

forcefield and quadratic fits. Along the horizontal axis, distance
measured in angstroms, and energy is measured in KcalM21 up the
vertical axis.
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A. Normal modes for xn

Since thexn equations are completely independent of t
inhomogeneity, we can seek the dispersion relation by
sumingxn5Ceinu1 ivt; then Eq.~2.7! implies

v (x)~u!52Ak sin~ 1
2 u!. ~3.1!

These are all delocalized, or spatially extended, linear wa
whose energy is spread evenly throughout the lattice.
imposing periodic boundary conditionsx2N(t)[xN(t), we
find eiNu5e2 iNu12imp for somemPZ. Thus allowable wave
numbersu are ‘‘quantized’’ and can only take the value
um5mp/N for m50,1,2, . . . ,N. The modes are then

xn,(m)
(odd)~ t !5Cm

oddH sin
cosJ ~vm

(x)t !sin~nmp/N!,

m51,2, . . . ,N21, ~3.2!

xn,(m)
(even)~ t !5Cm

evenH sin
cosJ ~vm

(x)t !cos~nmp/N!,

m50,1,2, . . . ,N, ~3.3!

where

vm
(x)5v (x)~um!52 Ak sin~mp/2N!, m50,1,2, . . . ,N.

~3.4!

This constitutes the full complement of 4N modes for the
second-order system of 2N variables xn(t) for n5
2N, . . . ,N21. Odd modes corresponding tom50 andm
5N are ignored since they have zero displacement
therefore correspond to no motion. In the even ca
@cos(mnp/N)#, them50 mode corresponds to motion of th
whole chain with no relative motion of atoms present; th
mode has zero frequency, which is due to the whole sys
not having any absolute reference point. The evenm5N
mode corresponds to the highest-frequency mode where
jacent atoms move exactly out of phase.

The amplitudesCm
odd,Cm

even are determined by requiring
the energy in each mode to be1

2 kBT. Equation~2.10! yields
1
2 kBT5Hx52NC2k sin2(mp/2N). Thus we have

Cm
odd5Cm

even5
AkBT

2AkNsin~mp/2N!
, ~3.5!

and the full solutions are

xn,(m)
(odd)~ t !5

AkBT

2AkNsin~mp/2N!
H sin
cosJ ~vm

(x)t ! sinS nmp

N D ,

m51,2, . . . ,N21, ~3.6!

xn,(m)
(even)~ t !5

AkBT

2AkNsin~mp/2N!
H sin
cosJ ~vm

(x)t ! cosS nmp

N D ,

m50,1,2, . . . ,N, ~3.7!

-
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WATTIS, HARRIS, GRINDON, AND LAUGHTON PHYSICAL REVIEW E63 061903
wherem enumerates the mode number. Adding the contri
tions from the sin(vm

(x)t) and the cos(vm
(x)t) modes, these solu

tions have mean-square displacement

^xn,(m)
(odd) 2& t5

kBT

8kN sin2~mp/2N!
sin2S nmp

N D ,

m51,2, . . . ,N21, ~3.8!

^xn,(m)
(even) 2& t5

kBT

8kNsin2~mp/2N!
cos2S nmp

N D ,

m50,1,2, . . . ,N, ~3.9!

@where we use the notation̂f (t)& t for the time-averaged
value of f (t)]. The latter formula~3.9! produces a divergen
total mean-square displacement when summed over
modes~m! in the large-N limit, as can be seen by the calcu
lation

^xn
(even) 2& t5

kBT

8kN (
m51

N21
cos2~nmp/N!

sin2~mp/2N!

'
kBT

4kpE0

p/2cos2~2nu!

sin2~u!
du, ~3.10!

in which the singularity in the integrand atu50 causes the
integral to diverge. This is a standard result: there is no lo
range order in one dimension at anyT.0. The sin modes
give

^xn
(odd) 2& t5

kBT

8kN (
m51

N21
sin2~nmp/N!

sin2~mp/2N!

'
kBT

4kpE0

p/2sin2~2nu!

sin2~u!
du5

kBTn

4k
. ~3.11!

B. Odd normal modes for yn

We now look for the normal modes for theyn(t) vari-
ables, in which the inhomogeneity is present; this include
breather solution. In the presence of an inhomogeneity, fi
ing a full set of normal modes is nontrivial, so to simplify th
problem, we split it into two parts noting the invariance
the determining equations under the mapn°2n. Thus we
shall look for modes that share this symmetry, nam
‘‘even’’ modes that satisfyy2n(t)5yn(t), and ‘‘odd’’
modes that are antisymmetricy2n(t)52yn(t). We seek the
latter first.

The conditiony2n52yn immediately impliesy050 so
the inhomogeneity is not noticed~as occurs for all thex
modes!. Insertingyn5Ceivte2lunusin(nu) into Eqs.~2.7! and
~2.8!, we find that the former is automatically satisfied, a
the latter implies eitherl50 or u50,p. Both u50 andu
5p imply yn(t)[0 and so are irrelevant;l50 yields the
dispersion relation
06190
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v (y) 2~u!52g14k sin2~ 1
2 u!. ~3.12!

Imposing periodic boundary conditions again yields
‘‘quantization’’ condition onu: yN(t)[y2N(t), which im-
plies sin(Nu)50 so u5um5mp/N for m50,1, . . . ,N, and
there are only a finite number of normal modes. Thus
have solutions

yn,(m)
(odd)5C sinS nmp

N D H sin
cosJ ~vm

(y)t !, m51,2, . . . ,N21,

~3.13!

wherevm
(y)5v (y)(um), and C is determined by forcing the

total energy of the mode to be12 kBT. Here we reject the
modes corresponding tom50,p since they both imply zero
displacement for theyn(t)’s therefore they are irrelevant.

Equation ~2.10! implies 1
2 kBT5H5 1

2 C2Nvm
(y) 2 . Thus

the mean-square displacement at siten due to the pair of
modes numberedm @one for sin(vm

(y)t) and one for cos(vm
(y)t)]

is

^yn,(m)
(odd) 2& t5

kBT sin2~mnp/N!

4kNS g

2k
1sin2~mp/2N! D . ~3.14!

Summing Eq.~3.14! over m, we can find the mean-squar
deviation at a particular siten due to the sum of all oddy
modes~m! ~See Appendix A 1 for details!,

^yn
(odd) 2&5

kBT

4kN (
m51

N21
sin2~mnp/N!

~g/2k!1sin2~mp/2N!

'
kBT

4k E
m50

1 12cos~2nmp! dm

g

k
112cos~mp!

'
kBT

4A2gk
F12expS 22UnUA2g

k D G , ~3.15!

where m5mn/N. Thus the odd modes have small mea
square displacement near the inhomogeneity.

C. Even normal modes foryn

In this case, the symmetry we impose is that ofyn(t)
[y2n(t), so that the shape of the mode is invariant und
n°2n. The inhomogeneity now plays a crucial role in o
analysis. Let us assume the modes have the form

yn
(even)~ t !5C f unuH sin

cosJ ~vt ! ~3.16!

for some shape of oscillation determined byf n with f 051.
The displacement of the atoms nearest to the inhomogen
(y61) is then determined byf 1 and Eq.~2.9! implies

f 1511
g«

k
2

v2

2k
. ~3.17!
3-4
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The displacement of all subsequent atoms is then determ
by Eq. ~2.8!, which implies

05 f n112S 21
2g

k
2

v2

k D f n1 f n21 ~3.18!

for n.1. This recurrence relation is solved by

f n5C1einu1C2e2 inu, ~3.19!

whereu is related tov through the same dispersion relatio
~3.12! as for oddy modes. Imposing the conditionsf 051
and Eq.~3.17! on Eq.~3.19!, we find the solution

f n5cosnu1
sinnu

sinu S 11
g«

k
2

v2

2k
2cosu D . ~3.20!

We have found a one-parameter family of solutions, para
etrized byu. This is reduced to a finite set upon imposin
periodic boundary conditions atn56N. Since we have ex-
plicitly constructed the mode to be even, the conditi
yN(t)[y2N(t) is automatically satisfied, hence to impo
periodic boundary conditions we require that the joining
n5N to n52N is smooth; that is, we imposeyN11(t)
[y12N(t), which implies f N115 f N21. This simplifies to

tan~Nu!5
2g~12«!

ksinu
. ~3.21!

Both sides of this expression are plotted in Fig. 4 usingN
56 as an example.

Fixing N and taking the limit of smallg«/k ~later we will
find that this corresponds to largeN and smallg/k with N
!k/g) leads to all solutions of Eq.~3.21! occurring at small
values of tan(Nu). This impliesgN/k!1, and then the al-
lowable modes are determined by

um5
mp

N S 12
g~12«!

mpksin~mp/N! D , m51,2, . . . ,N21,

~3.22!

uN5p2Ag~12«!

k
. ~3.23!

FIG. 4. Both sides of Eq.~3.21! plotted againstu showing how
periodic boundary conditions quantize the allowable values fou.
In the example illustrated,N56, thus our chain has 12 atoms, an
there are 12 intersections of the curves, illustrating that there ar
many even modes as atoms.
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The case tan(Nu)5O(1) can only be solved numerically, i
needed; here we choose to pursue theoretical results, s
shall continue with the case in whichum;mp/N.

Combining Eqs.~3.12!, ~3.20!, and~3.16! yields

yn,(m)
(even)5CFcos~num!2

g~12«!sin~ unuum!

k sin~um! Gsin~vm
(y)t !.

~3.24!

Since in this casegN/k!1, the sin(unuum) term is asymptoti-
cally small for allm51,2, . . . ,N21, and setting the energ
of each mode to1

2 kBT yields C25kBT/Nvm
(y) 2 . Thus

yn,(m)
(even)5A kBT

Nvm
(y) 2 F cos~num!

2
g~12«!sin~ unuum!

k sin~um! G H sin
cosJ ~vm

(y)t !, ~3.25!

and so, combining the sin(vm
(y)t) and cos(vm

(y)t) modes, we
find

^yn,(m)
(even) 2& t;

kBT

2Nvm
(y) 2 S 11cos~2num!

2
4g~12«!sin~2unuum!

k sin~um! D . ~3.26!

To find the total mean-square displacement at siten due to
all even modes, we now need to sum this overm
51,2, . . . ,N21, giving

^yn
(even) 2&5

kBT

4kN (
m51

N21
11cos~2num!

~g/k!112cos~um!

2
4g~12«!sin~2unuum!

k sin~um! @ ~g/k!112cos~um! #

'
kBT

4k E
m50

1 11cos~2nmp!

~g/k!112cos~mp!

2
4g~12«!sin~2unump!

k sin~mp! @ ~g/k!112cos~mp! #
dm

;
kBT

4A2kg
S ~11e22nA2g/k!2A2g

k
~12«!~1

2e22nA2g/k! D , ~3.27!

using results from Appendix A and noting that^yn
(even) 2&

5(kBT/8k)@ j 0
(r )1 j 2n

(r )24g(12«)h2n
( i )/k#, whereq5g/2k.

D. Breathers in the infinite lattice

In long chains, it is natural to expect a mode that is ce
tered on the defect and has an amplitude that decays
distance from the defect. Such a mode is termed ‘‘loc
ized,’’ and since it will have a similar form to the breath

as
3-5
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WATTIS, HARRIS, GRINDON, AND LAUGHTON PHYSICAL REVIEW E63 061903
mode in the sine-Gordon equation, we use the te
‘‘breather mode’’ here, even though our system is linear.

For the simplest form of breather, we assume that
decay is exponential and monotonic, that is,

yn5Ce2lunuH sin
cosJ ~vt !. ~3.28!

Substituting this into Eq.~2.8! leads to the dispersion relatio

vac
2 52g12k~12coshl!, ~3.29!

where the subscript ‘‘ac’’ stands for acoustic, since t
mode bifurcates from the minimum (u50) of the dispersion
relation v (y)(u) ~3.12!. The value ofl is determined by
requiring Eq.~2.9! to hold. This yields

g~12«!

k
5sinhl;l1 1

6 l3 ~3.30!

for small l; thus l;g(12«)/k, which we have already
stated is a small quantity. Setting the energy of this brea
mode to1

2 kBT enablesC to be determined. Thus we have th
solution

yn5AkBT~12«!

2k
e2g(12«)unu/kH sin

cosJ ~A2g t !,

~3.31!

which together have a mean-square displacement at siten of

^yn
2&5

kBT~12«!

2k
e22g(12«)unu/k. ~3.32!

This solution ~3.31! is relevant to our study, but does n
satisfy periodic boundary conditions. In the next section,
show how to modify the above analysis to produce a m
that satisfies the periodic boundary conditions and the eq
tions of motion.

An alternative form of breather is possible, in which a
ternate base pairs are displaced in opposite directions.
can be described by

yn5C~21!ne2lunuH sin
cosJ ~vt !. ~3.33!

As with the acoustic mode, the relationship betweenl andv
is found from Eq.~2.8!,

vopt
2 52g12k~11coshl!. ~3.34!

At l50, this equals the maximum frequency of the spatia
extended modes~3.12!, which occurs atu5p, thus this
mode is optical in nature. Equation~2.9! determines the rel-
evantl, via sinhl52g(12«)/k, thus this mode is irrelevan
in our case where«,1. Modes that are optical inn.0 and
acoustic inn,0 are impossible due to the dispersion re
tions ~3.29! and ~3.34! not overlapping.
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E. Breathers in the finite lattice

The observant reader will note that in Sec.~III C ! we
found 2N even modes and 2N22 odd modes in Sec.~III B !,
leaving a deficit of two modes~since there should be 4N
modes in a second-order system with 2N degrees of free-
dom!. These final modes come from a breather-type osci
tion as discussed in Sec. III D that is, an even localized m
centered on the inhomogeneity. However, the mode fo
there~3.31! does not quite satisfy the periodic boundary co
ditions. The discrepancy is small, but we now show tha
similar mode that satisfies the boundary conditions can
constructed. Note that in Sec. III C we have restricted o
selves to theoretical analysis of the caseN!k/g, thus the
solution derived below where this condition is kept will n
necessarily agree with theN→` case considered in the pre
ceding section.

We seek a time-harmonic solution of Eq.~2.8!, as in Eq.
~3.16!, but assume exponential growth and decay inn, which
leads to a solution of the formyn5Acosh(ln)1Bsinh(ln).
Here,v is related tol through Eq.~3.29! as in the previous
calculation of a breather mode. Imposingf 051 and Eq.
~3.17! implies

f n5cosh~ln!2
g~12«!

ksinh~l!
sinh~ln!5

cosh„l~N2unu!…
cosh~lN!

.

~3.35!

The value ofl is determined by imposing periodic bounda
conditions and, assumingN!k/g, this gives l25g(1
2«)/kN. The constantC is determined by requiring the en
ergy in the mode to be12 kBT giving C25kBT/2gN, thus

yn
(br)5A kBT

4gN
coshSA2g~12«!

kN
~N2unu! D H sin

cosJ ~A2gt !

~3.36!

and thus

^yn
(br) 2& t5

kBT

2gN
cosh2SA2g~12«!

kN
~N2unu! D .

~3.37!

In order for this oscillation to be observable, we need
verify that the extended/nonlocal modes have average am
tudes that sum to a smaller total. Thus, in the next section
shall compare the mean-square deviations for all modes

F. Summary

In the large chain length~N! limit, the average displace
ment of the atoms (x5u1v) diverges~3.10!, as is to be
expected for a system with continuous degrees of freed
The separation between the two chains (y5u2v), however,
is well-behaved. We calculated this in several parts: the
modes ~3.15!, the extended even modes~3.27!, and the
breather mode~3.32!. Now we put all these together to wor
3-6
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out the total mean-square displacement due to all modes
find how this depends on the distance from the defect (n),

^yn
2&5^yn

(odd) 2&1^yn
(even) 2&1^yn

(br) 2&

5
kBT

4A2kg
~12e22unuA2g/k!1

kBT

4A2kg

3F11e22unuA2g/k1OS g

k D G1
kBT

2gN
cosh2„l~N2unu!…

FIG. 5. A plot of the rms displacement for the distance betwe
base pairs~3.38! measured in Å , against base number for the c
«50.5, g50.0146 J m22, k50.0376 J m22, N56, andT5300 K.
06190
nd

5
kBT

2A2kg
F11A 2k

N2g

3cosh2SA2g~12«!

kN
~N2unu! D G . ~3.38!

This quantity is plotted in Fig. 5, for parameters deriv
from the AMBER energies derived earlier~Sec. II A!. In this
case, we see that the central base~where the defect is! devi-
ates from its equilibrium position about one and a half tim
as far as the bases away from the defect. This increa
deviation only affects the atoms immediately neighboring
defect (n561), and becomes negligible at the secon
neighbor sites (n562) . In exceedingly long chains, awa
from the defect, the rms deviation of the interchain spac
from equilibrium isAkBT/A4 (8kg). Near the defect, there i
an increase in this displacement. Counterintuitively, this
crease in displacement, although caused by«Þ1, is not very
sensitive to the value of«, but rather onA2k/N2g. Depend-
ing on the exact system being studied, this could be hig
significant, or very small, since our analysis rests on 1N
being small andk/Ng being large, and this amplitude is th
product of these two quantities. The number of bases

fected by this isO(A„kN/g(12«)…).

n
e

fect.

FIG. 6. Plots of the base opening distance against time for the defective base pair~top left!, the nearest neighbor (n51, bottom left!, the

second neighbor (n52, top right!, and the third neighbor~top right!, showing the decrease in amplitude as one moves away from the de
The vertical axis records distance in Å , and the horizontal axis shows time in units of 0.7 ps; the parametersg,k,« are as in Fig. 5.
3-7
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IV. ANALYSIS OF RESULTS

In order to test the model presented here, we have in
tigated its ability to~a! reproduce the frequency of breathin
of an AF base pair as calculated from the atomistic simu
tions,~b! reproduce the relative frequencies of breathing o
normal AT base pair compared to an AF pair, and~c! repro-
duce the free energy of breathing for the AF pair, as pre
ously estimated from the atomistic simulations. For this p
pose, the model was used to create a 10-ns dynam
simulation, during which the displacement from equilibriu
of the variablesyn(t) was sampled every picosecond. Figu
6 illustrates the first ns of the simulation for base pairsn
50,1,2,3. Theresulting distribution of opening distances
shown in Fig. 7, which contains the results for both the c
tral AF base pair and one of the~standard! base pairs far
away from the defect.

In the atomistic simulation@1#, breathing was defined in
terms of distances between hydrogen-bonded atoms in
AF pair exceeding a certain critical value. With that defin
tion, a breather was observed four times in 10 ns. From
histogram, we have to define a breathing event in this mo
as one that causes the distance between the bases to e
11.5 Å . We nowconsider whether such a definition o
‘‘breathing’’ is consistent with the predicted ratio of breat
ing frequencies for normal and AF pairs, and for the cal
lated free energy of breathing of an AF pair.

If we take 11.5 Å to define a breathing event, then in f
within the time scale of our simulation the normal base pa
did not breathe at all. However, it is possible to infer fro
the fitted Gaussian distribution that such an event sho
occur once every 250 ns, i.e., a rate of 4 perms. Data from
NMR on imino-proton exchange and chemical shift measu
ments indicate that for conventional DNA sequences, bre
ing is an event that takes place on the microsecond t
scale, depending on experimental conditions@13#. More pre-
cisely, taking 11.5 Å to define base pair breathing, the ra
of opening frequencies for AF and normal base pairs is p
dicted to be about 100. This may be considered to be at
lower limit of the expected ratio. We have therefore calc
lated what the opening distance would have to be define
in order to produce a breathing ratio AF:normal of 100
This can be calculated from the histograms, and Fig. 8 sh
how the ratio varies with the defining opening distance. W
see that for a ratio of 1000, we require breathing to be
fined as a displacement from equilibrium of 14 Å .

From the atomic simulation, the free energy of opening
the AF base pair was calculated, from the log of the ratio

FIG. 7. Distribution of opening distance for the AF base~filled
line! and a standard base~dashed line!, measured over 10 ns.
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the time spent open to the time spent not open, as abo
Kcal/mol. The same procedure may be used here. The ca
lated free energy of breathing, for AF and normal base pa
is plotted as a function of the defining opening distance
Fig. 9. It can be seen that if we define opening as displa
ments above 11.5 Å , the free energy of breathing for the
pair is defined as 4.2 Kcal/mol. If, on the other hand, we a
to reproduce the previous estimate of the free energy
breathing, we must define breathing as opening above 4.
The above results show a remarkable agreement given
only three parameters have been fitted to external d
(k/m,g/m,«), as described in Sec. II A. Due to the rarity o
the breathing event, which is extremely infrequent even
the case of the AF base pair, the results described in
section are very sensitive to the shape of the tail of the
tributions displayed in Fig. 7. Here, we have fitted the data
the obvious first choice distribution, namely a Gaussi
However, another distribution may give more accurate
sults.

V. CONCLUSIONS

We have shown that the presence of an inhomogeneit
defect in the interchain bonds is sufficient to cause a bre
erlike mode to exist. Our model has no nonlinearity, which
usually necessary for breathers to exist. Being a lin
model, a normal mode decomposition is possible, and i
possible to explicitly find the full set of normal modes usin
asymptotic analysis, which relies on the interchain bond
being much weaker than the along-chain interactions. T
result is interesting in its own right, since localized mod
are usually attributed to nonlinearities, and we have sho
that they can actually be accounted for more simply by
homogeneities in the lattice. This does not discount brea

FIG. 8. Ratio of breathing rates for the standard base relativ
an AF base. The AF base is expected to breathe around 1000 t
faster than the conventional base.

FIG. 9. Free energy associated with an opening event for the
base~diamonds! and a conventional base~stars!.
3-8
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modes, since traveling localized modes cannot be expla
by our analysis.

The model has then been analyzed using the ideas of
tistical mechanics to investigate whether the breathing m
tion is observable when all modes are excited. At lead
order, all base pairs have the same mean-square disp
ment from their equilibrium position, but the first correctio
term to this result shows a clear peak in displacement at
site of the defect. Figure 6 shows the interpair distance p
ted against time for the defective base pair and for the th
base pairs closest to it on one side. These show an incre
deviation for the defective pair and its nearest neighbor,
little effect on base pairs further away.

Here we have implemented periodic boundary conditio
but other boundary conditions could be used, and we bel
that similar results would be seen. Boundary conditions
some description need to be applied so that the correct n
ber of normal modes are found and that the large-N limit is
taken correctly, that is, without the introduction of extr
spurious modes that might invalidate subsequent analysi
hint of this can be seen in the slight difference between
breatherlike mode in the finite system and the infinite s
tem.

In Sec. III only the variables describing the spacing b
tween the chains supported a breather-type solution; the
erage displacement of the double chain showed no local
oscillation. Experiments in which breathers were observe
only one strand and not the other cannot be explained by
analysis described here; for that a more general mode
required, which we hope to present later.

The comparison with results of molecular simulations d
tailed in Sec. IV shows that defining a displacement of m
than 11 Å to be a breathing event gives a reasonable
scale for the occurrences, both for the defective AF base
and for a standard base pair. This also gives free energ
breathing, which is of the correct order of magnitude. F
such a simple, generic model, in which only three parame
are fitted to known data, these results show a remarka
good accuracy.
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APPENDIX: CALCULATIONS

1. Calculation of j n
„r …

We rewriteI n using trigonometric identities as

I n5E
0

1 sin2~nmp! dm

q1sin2~ 1
2 mp!

5E
0

1 @12cos~2npm!# dm

2q112cos~pm!

~A1!

and use 112q5A11q̃2. Now define
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j n
(r )5E

0

1 cos~npdm!

A11q̃22cos~pm!
,

j n
( i )5E

0

1 sin~npdm!

A11q̃22cos~pm!
~A2!

so thatI n5 j 0
(r )2 j 2n

(r ) and

j n5 j n
~r !1 i j n

~ i !5E
0

1 enp im

A11q̃22cos~pm!
. ~A3!

We then defineJ(d)5(n50
` dnj n and swap the order of the

summation and the integration. Performing the summat
inside the integral yields

J~d!5E
0

1 12d cos~pm!1 id sin~pm! dm

~A11q̃22cospm!~11d222d cospm!
,

~A4!

from which it can be shown that

J(r )~d!5Re$J~d!%5
12dq̃2dA11q̃2

q̃~11d222dA11q̃2!
. ~A5!

SinceJ(r )(d)5(n50
` dnj n

(r ) , we can find thej n
(r ) by equat-

ing the coefficients of powers ofd in

q̃~11d222dA11q̃2!J(r )~d!512dq̃2dA11q̃2.
~A6!

This yields the recurrence relation

05 j n
(r )1 j n22

(r ) 22 j n21
(r ) A11q̃2, ~A7!

which has the general solution

j n
(r )5C1~A11q̃21q̃!n1C2~A11q̃22q̃!n. ~A8!

The constantsC1 and C2 are determined by equating th
O(d0) and O(d1) terms, which areq̃ j 0

(r )51 and q̃( j 1
(r )

22 j 0
(r )A11q̃2)52q̃2A11q̃2. These equations implyC1

50 andC251/q̃. This is consistent withj n
(r )→0 asn→`,

as we expect in this limit, due to the rapid oscillations in t
integrand ofj n

(r ) for largen. Thus

j n
(r )5

~A11q̃22q̃!n

q̃
;

e2nq̃

q̃
. ~A9!

Rewriting in terms of our original variables, we findq̃2

54q(11q) and hence
3-9



s.

WATTIS, HARRIS, GRINDON, AND LAUGHTON PHYSICAL REVIEW E63 061903
I n5
1

2Aq~11q!
$12@112q22Aq~11q!#2n%

;
1

2Aq
@12exp~24nAq!#, ~A10!

since we are interested in the limitn→` with q→0.
06190
2. Calculation of hn
„ i …

Here we tackle a similar integral using similar method
We wish to calculate

hn
( i )
ªE

0

1 sin~nmp! dm

sin~mp!@ 2q112cos~mp! #
, ~A11!

thus we also define
hn
(r )
ªE

0

1 cos~nmp! dm

sin~mp!@ 2q112cos~mp! #
, hnªhn

(r )1 ihn
( i )5E

0

1 einmp dm

sin~nmp!@ 2q112cos~mp! #
, ~A12!

and thenH(d):5(n50
` dnhn . Reversing the order of the integration and the summation, we find

H~d!5E
0

1 dm

sin~mp!@ 2q112cos~mp! # @ 12d cos~mp!2 id sin~mp! #
. ~A13!
To calculatehn
( i ) , it is sufficient for us to findH ( i )(d)

5Im$H(d)%, which can be found usingMAPLE,

H ( i )~d!5
d„124dAq~11q!2d2

…

2Aq~11q!~12d2!@122~112q!d1d2#
.

~A14!

RecallingH ( i )5(n50
` dnhn

( i ) , we find thehn
( i )’s by equating

coefficients of powers ofd in

2Aq~11q!~12d2!@122~112q!d1d2# (
n50

`

dnhn
( i )

5d„124dAq~11q!2d2
…. ~A15!

For dn with n>4, we find the recurrence relation

hn14
( i ) 22~112q!hn13

( i ) 12~112q!hn11
( i ) 2hn

( i )50,
~A16!

which has the solution

hn
( i )5C01C1~21!n1C2ln1C3l2n, ~A17!

with l5112q12Aq(11q). Powersn50,1,2,3 yield

h0
( i )50, h1

( i )5
1

2Aq~11q!
, ~A18!
h2
( i )5

112q22Aq~11q!

Aq~11q!
,

h3
( i )5

4~112q!228~112q!Aq~11q!21

2Aq~11q!
.

Applying these to the solution~A17! yields the constantsCk
(k50,1,2,3) and hence the final solution

hn
( i )5

l

~l221!2
@~l11!22~l21!2~21!n24l12n#.

~A19!

This simplifies for the case of evenn, which we require, and
simplifies further in the limit of smallq,

h2n
( i )5

4l2~12l22n!

~l221!2
5

12@112q22Aq~11q!#2n

4q~11q!

;
12e24nAq

4q
. ~A20!
3-10
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